Noninvasive In Vivo Imaging to Evaluate Immune Responses and Antimicrobial Therapy against Staphylococcus aureus and USA300 MRSA Skin Infections

John S. Cho¹, Jamie Zussman¹, Niles P. Donegan², Romela Irene Ramos¹, Nairy C. Garcia¹, Daniel Z. Uslan³, Yoichiro Iwakura⁵, Scott I. Simon⁵, Ambrose L. Cheung², Robert L. Modlin¹,⁶, Jenny Kim¹,⁷ and Lloyd S. Miller¹

Staphylococcus aureus skin infections represent a significant public health threat because of the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). As greater understanding of protective immune responses and more effective antimicrobial therapies are needed, a S. aureus skin wound infection model was developed in which full-thickness scalpel cuts on the backs of mice were infected with a bioluminescent S. aureus (methicillin sensitive) or USA300 community-acquired MRSA strain and in vivo imaging was used to noninvasively monitor the bacterial burden. In addition, the infection-induced inflammatory response was quantified using in vivo fluorescence imaging of LysEGFP mice. Using this model, we found that both IL-1α and IL-1β contributed to host defense during a wound infection, whereas IL-1β was more critical during an intradermal S. aureus infection. Furthermore, treatment of a USA300 MRSA skin infection with retapamulin ointment resulted in up to 85-fold reduction in bacterial burden and a 53% decrease in infection-induced inflammation. In contrast, mupirocin ointment had minimal clinical activity against this USA300 strain, resulting in only a 2-fold reduction in bacterial burden. Taken together, this S. aureus wound infection model provides a valuable preclinical screening method to investigate cutaneous immune responses and the efficacy of topical antimicrobial therapies.

Journal of Investigative Dermatology (2011) 131, 907 915; doi:10.1038/jid.2010.417; published online 30 December 2010

INTRODUCTION

Staphylococcus aureus is the most common cause of skin and soft tissue infections, such as impetigo, cellulitis, folliculitis/furunculosis, and abscesses (McCaig et al., 2006; Moran et al., 2006). These infections have become a significant public health problem as they result in over 11 million outpatient and emergency room visits and ~500,000 hospitalizations per year in the United States (McCaig et al., 2006). Furthermore, the treatment of S. aureus infections has been complicated by the widespread emergence of antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) (Boucher and Corey, 2008; Deleo and Chambers, 2009).

Systemic antibiotic treatment is frequently required to treat S. aureus skin infections, especially in cases of community acquired MRSA (CA MRSA) infections. One strain, USA300, is responsible for >90% of all CA MRSA skin and soft tissue infections in the United States (King et al., 2006; Jones et al., 2007; Tenover and Goering, 2009). USA300 can cause serious and necrotizing skin infections, which are likely because of the expression of cytolytic toxins such as PVL (Panton Valentine leukocidin), α toxin and other cytolytic toxins (Wang et al., 2007; David and Daum, 2010; Kennedy et al., 2010).

In addition to systemic antibiotics, topical antibiotic therapy can have an important adjunctive role in the treatment of superficial S. aureus skin infections, such as impetigo, infected lacerations, and in areas with poor blood
supply (i.e., diabetic foot ulcers) as well as in the prevention of postsurgical wound infections (Daum, 2007). Furthermore, topical antibiotics can be used alone for uncomplicated superficial skin infections such as impetigo and infected lacerations, as a higher local concentration of the antibiotic reaches the site of infection and reduces the potential for systemic side effects (Elston, 2007). Mupirocin is the most commonly used prescription strength topical antibiotic to treat \textit{S. aureus} skin infections (Daum, 2007). In addition, mupirocin is frequently used for decolonization of \textit{S. aureus} and MRSA nasal carriage (Bode \textit{et al}., 2010). However, \textit{S. aureus} strains with low and high level mupirocin resistance have been reported, which contributes to treatment failures (Thomas \textit{et al}., 2010). Retapamulin is a newer topical antibiotic agent, which has been shown to exhibit potent antibacterial activity against \textit{S. aureus in vitro} and \textit{in vivo} (Yang and Keam, 2008). However, the efficacy of topical retapamulin against an important CA MRSA strain, such as USA300, has not been well characterized.

Because of this rapidly emerging epidemic and the growing problem of antibiotic resistance, there is a great need for new antibiotic therapies as well as an increased understanding of protective immune responses to help design immune based therapeutic strategies. Although human skin equivalent culture systems can be used to monitor bacterial colonization and infection \textit{in vitro} (Holland \textit{et al}., 2008), a preclinical \textit{in vivo} animal model system is required by the FDA (Food and Drug Administration) to determine the efficacy of new antimicrobial treatments before more extensive studies in larger animals or human subjects. Previous animal models to evaluate topical treatment of superficial \textit{S. aureus} infections include a burned skin model (Rode \textit{et al}., 1988; Heggers \textit{et al}., 1989), a skin surgical/suture wound (McRipley and Whitney, 1976; Rittenhouse \textit{et al}., 2006), and a tape stripping model (Kugelberg \textit{et al}., 2005; Hahn \textit{et al}., 2009). In each of these models, euthanasia is required to determine the \textit{ex vivo} bacterial burden using colony counts, and consequently, large numbers of animals are required to determine treatment efficacy. In this study, we set out to develop a \textit{S. aureus} skin infection model utilizing advanced techniques of \textit{in vivo} imaging to noninvasively and longitudinally monitor the bacterial burden and infection induced inflammation without the need for euthanasia.

\textbf{RESULTS}

\textit{In vivo} bioluminescence imaging to measure bacterial burden

To model a \textit{S. aureus} skin wound infection, scalp cuts on the backs of mice were inoculated with a bioluminescent \textit{S. aureus} strain (SH1000). The \textit{in vivo} bacterial burden was determined by measuring the \textit{S. aureus} bioluminescence signals in anesthetized mice (Xenogen IVIS; Caliper Life Sciences, Hopkinton, MA). To determine the optimal bacterial inoculum that produced a consistent skin wound infection, increasing inocula of \textit{S. aureus} \textit{(2 x 10^5, 2 x 10^6, and 2 x 10^7} colony forming units (CFUs) per 10 μl) or no bacterial inoculation (none) were evaluated (Figure 1). \textit{2 x 10^7} CFUs induced the largest lesions and \textit{2 x 10^6} CFUs induced intermediate lesion sizes, which were statistically greater than those of uninfected mice (Figure 1a and b). In contrast, \textit{2 x 10^5} CFUs induced lesions virtually identical to those of uninfected mice. Similarly, \textit{2 x 10^7} CFUs induced higher bioluminescent signals than \textit{2 x 10^6} CFUs, but the signals of both inocula decreased at a similar rate (Figure 1c and d). \textit{2 x 10^5} CFUs resulted in bioluminescent signals that increased on day 1 but decreased on subsequent days to levels below the bioluminescent signals of the other inocula. It is noteworthy that all three inocula had bioluminescent signals that were statistically greater than the background bioluminescence signals (none). As our goal was to produce a \textit{S. aureus} skin wound infection that induced relatively small lesion sizes and bioluminescence signals that were greater than the uninfected scalpel wounds, the intermediate inoculum of \textit{2 x 10^6} CFUs of \textit{S. aureus} was used in all subsequent experiments.

To confirm that the \textit{in vivo} bioluminescence signals accurately represented the bacterial burden in \textit{in vivo}, colony counts were performed on skin biopsies harvested on day 1 from the infected skin lesions (Figure 2). The \textit{ex vivo} bacterial burden of mice inoculated with \textit{2 x 10^5, 2 x 10^6, and 2 x 10^7} CFUs (Figure 2a and b) highly correlated with the corresponding \textit{in vivo} bioluminescence signals (correlation coefficient: \textit{R}^2 = 0.9853; Figure 2c). These data demonstrate that \textit{in vivo} bioluminescence imaging of a \textit{S. aureus} skin wound infection provides a noninvasive and accurate measurement of the \textit{in vivo} bacterial burden.

\textit{In vivo} fluorescence imaging to measure the infection-induced inflammation

Neutrophil recruitment to the site of infection is required for an effective immune response against \textit{S. aureus} (Verdrengh and Tarkowski, 1997; Molne \textit{et al}., 2000). To determine the degree of neutrophil recruitment, histological analysis is commonly used. At day 1, skin wounds of mice inoculated with \textit{S. aureus} developed large neutrophilic abscesses observed in both hematoxylin and eosin (H&E) labeled and anti Gr 1 mAb (neutrophil marker) labeled sections compared with control mice that were wounded but not infected with \textit{S. aureus} (Figure 3a). In addition, \textit{S. aureus} bacteria could be detected within the abscess by Gram stain. However, the measurement of neutrophil abscess formation by histology is a nonparametric measurement and requires euthanasia to obtain skin specimens. To noninvasively quantify the inflammatory response, \textit{in vivo} fluorescence imaging of LysEGFP mice, which possess green fluorescent neutrophils, was used (Faust \textit{et al}., 2000). By combining the use of bioluminescent \textit{S. aureus} and LysEGFP mice, both bacterial burden and neutrophil infiltration (Kim \textit{et al}., 2008) could be simultaneously measured by sequential \textit{in vivo} bioluminescence and fluorescence imaging (Figure 3b e). Similar to C57BL/6 mice in Figure 1, \textit{S. aureus} inoculated LysEGFP mice developed bioluminescence signals that decreased over the course of the infection and were detectable over the background signals of control uninjected mice (Figure 3b and d). In addition, the \textit{S. aureus} infected LysEGFP mice had significantly greater enhanced green fluorescent protein (EGFP) neutrophil fluorescent signals.
Figure 1. Mouse model of *Staphylococcus aureus* skin wound infection. Three 8-mm in length, parallel, full-thickness scalpel wounds on the backs of mice were inoculated with 2×10^7, 2×10^6, or 2×10^5 colony-forming units (CFUs) per 10 μl of *S. aureus* or no bacteria (none) ($n=12$ mice per group). (a) Mean total lesion size (cm²) ± SEM. (b) Representative photographs of the lesions of the entire dorsal back (upper panels) and close-up photographs of the lesions (lower panels) are shown. (c) Bacterial counts as measured by in vivo *S. aureus* bioluminescence (mean total flux (photons per second) ± SEM) (logarithmic scale). (d) Representative in vivo *S. aureus* bioluminescence on a color scale overlaid on top of a grayscale image of mice. *P<0.05; †P<0.01; ‡P<0.001, S. aureus-infected mice versus none (Student's t-test).
Imaging of In Vivo JS Cho et al. required for host defense against IL 1R/MyD88 signaling is an essential immune mechanism
Contribution of IL-1α and IL-1β to host defense IL 1R/MyD88 signaling is an essential immune mechanism required for host defense against S. aureus skin infections in mice and humans (Miller et al., 2006; von Bernuth et al., 2008). We previously described that IL 1β (but not IL 1α) has a crucial role in activating IL 1R mediated cutaneous host defense against an intradermal S. aureus challenge in mice (Miller et al., 2007). Thus, we wanted to determine the contribution of IL 1α and IL 1β to IL 1R mediated cutaneous host defense during the skin wound infection compared with the deeper intradermal infection. Wild type mice and mice deficient in IL 1R, IL 1α, or IL 1β were inoculated with S. aureus either by superficial inoculation of the scalpel wounds or by intradermal injection and lesion sizes, and in vivo bioluminescence were evaluated (Figure 4). IL 1R deficient mice developed up to 3 fold larger lesions and 8 to 15 fold higher bioluminescent signals than wild type mice (Figure 4a). Similarly, during the deeper intradermal S. aureus infection, IL 1R deficient mice developed 3.7 fold larger lesions and up to 12.8 fold higher bioluminescent signals than wild type mice (Figure 4b). However, during the superficial infection, mice deficient in either IL 1α or IL 1β had ~1.5 fold larger lesions and up to 3 fold higher bioluminescent signals on days 1 and 3 after inoculation (Figure 4a). Although these increases were statistically significant, they were modest compared with the substantially increased lesion sizes and bioluminescent signals observed in IL 1R deficient mice. In contrast, for the deeper intradermal infection, IL 1β deficient mice had lesion sizes and bioluminescent signals that were virtually identical to those of IL 1R deficient mice, and IL 1α deficient mice had lesion sizes and bioluminescent signals that closely resembled those of wild type mice (Figure 4b). Taken together, both IL 1α and IL 1β contributed to IL 1R mediated host defense during the S. aureus skin wound infection, whereas IL 1β was the predominant contributor to IL 1R mediated host defense during the deeper intradermal S. aureus skin infection.

Determination of the in vivo efficacy of topical antimicrobial therapy
To determine whether this S. aureus skin wound infection model could be used to evaluate the efficacy of topical antimicrobial therapy, we compared the efficacy of the two FDA approved topical prescription strength therapies, mupirocin and retapamulin. To perform these studies, we generated a bioluminescent USA300 strain. This strain was used in combination with LysEGFP mice so that both the bacterial burden and infection induced inflammation could be

Figure 2. In vivo bioluminescence highly correlated with ex vivo bacterial colony-forming unit (CFU) counts. Bacteria present within the infected skin lesions that were inoculated with 2 × 10⁶, 2 × 10⁷, and 2 × 10⁸ CFUs per 10 µl of Staphylococcus aureus (n = 5 mice per group) were harvested from mice on postinoculation day 1 and CFUs were determined after overnight culture. (a) Representative bacterial culture plates after overnight culture with or without bioluminescence. (b) Mean CFUs of S. aureus ± SEM recovered from 8-mm lesional punch biopsies on day 1. (c) Correlation between in vivo bioluminescence signals and total CFUs harvested from the infected skin lesions. The logarithmic trendline (blue line) and the correlation coefficient of determination (R²) between in vivo bioluminescence signals and total CFUs are shown.
measured. Mupirocin 2% ointment, retapamulin 1% ointment, or corresponding vehicle ointments (polyethylene glycol (mupirocin) and white petrolatum (retapamulin)) was topically applied (0.1 ml volume) to the infected skin lesions at 4 hours after inoculation followed by twice daily (every 12 hours) application for the next 7 days (Figure 5). Mupirocin ointment
in comparison with vehicle ointment had virtually identical lesion sizes, only slightly lower bioluminescence signals (~2 fold), and a similar degree of inflammation as measured by EGFP neutrophil fluorescence until day 10, when a 40% decrease was observed (Figure 5a)(c). In contrast, retapamulin ointment resulted in a 37 59% decrease in lesion sizes beginning at day 1 after inoculation, an 85 fold reduction in bioluminescent signals by day 3, and in a 24 53% decrease in EGFP neutrophil fluorescent signals beginning at day 3 compared with vehicle ointment treated mice (Figure 5d)(f). Thus, retapamulin ointment was clinically effective against a USA300 MRSA infection in our in vivo model and far superior to mupirocin treatment. An in vitro antibiotic sensitivity assay confirmed that this USA300 strain exhibited high resistance against mupirocin, as this strain had a 33,000 fold higher minimal inhibitory concentration of mupirocin compared with a mupirocin sensitive MSSA (methicillin sensitive S. aureus) strain (SH1000) (625 vs. 0.002 µg mL⁻¹, respectively). Taken together, these results demonstrate that this wound infection model can be used to determine the in vivo effectiveness of topical therapy against a clinically relevant MRSA USA300 strain, which will be critical in the future evaluation of other candidate antimicrobial therapies.

It should be mentioned that the bioluminescent construct in this USA300 strain was stable at early time points in vivo, as 100% of the ex vivo CFUs maintained this construct at least through day 3 (data not shown), suggesting that the in vivo bioluminescence signals closely approximated the actual bacterial burden at the time points when we observed major differences (days 1 3). However, at days 7 and 10, 76 and 50% of ex vivo CFUs maintained the construct, suggesting that at these late time points the in vivo bioluminescence signals may underestimate the actual bacterial burden.

DISCUSSION
Skin infections caused by S. aureus and MRSA have emerged as a major public health threat in the United States (McCaug et al., 2006; Moran et al., 2006). As new and effective...
treatment strategies are needed, a rapid and cost effective preclinical animal model is necessary to investigate in vivo protective immune responses and the efficacy of potential therapeutics. In this study a mouse model of a S. aureus skin wound infection was developed in which a bioluminescent S. aureus or CA MRSA strain was inoculated into skin wounds and in vivo bioluminescence and fluorescence imaging was used to noninvasively track the bacterial burden and infection induced inflammation in real time. Using this model, we uncovered a key role for IL 1α (in addition to IL 1β) in the cutaneous immune response in vivo. Importantly, this model was successfully used to evaluate the efficacy of topical antibiotic therapy against the clinically relevant CA MRSA strain USA300.

In this study, we found that both IL 1α and IL 1β contributed to host defense during a S. aureus skin wound infection, whereas IL 1β was more critical during a deeper intradermal S. aureus skin infection. A recent study demonstrated that keratinocytes stimulated with S. aureus lipoteichoic acid and peptidoglycan triggered an autocrine IL 1α signaling loop, which resulted in continuous production of neutrophil chemokines (Olaru and Jensen, 2010). In addition, keratinocytes constitutively express prestores of IL 1α that are released after nonspecific inflammation or infection (Lee et al., 1997). Thus, the important role for IL 1α during the skin wound infection is likely because of the release of the IL 1α from keratinocytes. In contrast, during the intradermal infection, the inducible IL 1β response of the bone marrow derived recruited cells of the abscess was a more critical determinant for host defense (Miller et al., 2007). Taken together, these results suggest that keratinocytes (and IL 1α) have a greater role in the cutaneous immune response during a S. aureus skin wound infection. Future studies will use this model to investigate other important cutaneous host defense mechanisms, including the role of pattern recognition receptors (e.g., Toll like receptors), cytokine and chemokine responses, and antimicrobial peptides.

As this model represented a S. aureus infection of open skin wounds, it provided the opportunity to evaluate the efficacy of topical antimicrobial therapy. We evaluated the two FDA approved prescription strength topical ointments, mupirocin and retapamulin, against the clinically relevant USA300 CA MRSA strain. We found that mupirocin ointment provided minimal antimicrobial activity against this USA300 strain, which we confirmed had high in vitro resistance to mupirocin. In contrast, retapamulin 1% ointment substantially reduced the bacterial burden by day 3 (85 fold), dramatically decreased the infection induced inflammation (> 50%), and had markedly smaller lesions that healed at a faster rate. These findings have clear clinical relevance and demonstrate how the presence of antibiotic resistance can complicate treatment. As retapamulin was clinically effective in eradicating S. aureus infection in vivo, these results suggest that retapamulin could serve as an alternative topical agent to help treat S. aureus/MRSA skin infections (and perhaps against nasal colonization), especially given the growing incidence of mupirocin resistance. Last, when comparing the vehicle ointments, white petrolatum, the vehicle for retapamulin, enhanced the bacterial burden (Figure 5e), which was not observed with polyethylene glycol, the vehicle for mupirocin (Figure 5b). Therefore, the vehicle may also be an important determinant for the development of future topical antibiotic therapies.

It should be mentioned that we did not observe a major difference in virulence with the USA300 strain compared with the laboratory SH1000 strain in this mouse model. The reason for this is likely because of differences in susceptibility between human and mouse cells to cytolytic toxins produced by USA300 (Diep et al., 2010). One example is PVL, which lyses human and rabbit neutrophils (but not mouse neutrophils), and has been demonstrated to have a critical role in necrotizing pneumonia in rabbits but not in mice (Bubeck et al., 2008; Diep et al., 2010). In addition, PVL has been shown not to be a virulence determinant for skin infections in mice (Bubeck et al., 2008). Thus, in certain instances regarding species specific virulence factors, the use of a mouse model has some limitations.

Taken together, the mouse model developed in this study utilized noninvasive in vivo bioluminescence and fluorescence imaging to determine the bacterial burden and infection induced inflammation without the need for euthanasia. Thus, the use of this model will substantially decrease animal usage, an important consideration for animal protection. This model could be used to study mechanisms of protective cutaneous immune responses and as a preclinical animal model to investigate and compare the in vivo efficacy of new topical (or perhaps systemic) antimicrobial therapeutic strategies.

MATERIALS AND METHODS
S. aureus bioluminescent strains

The bioluminescent S. aureus SH1000 strain, ALC2906, which possesses the shuttle plasmid pSK236 with the pbp2 (penicillin binding protein 2) promoter fused to the luxABCDE cassette from Photorhabdus luminescens, was used as previously described (Miller et al., 2006). This strain emits bioluminescent signals from live bacteria in all stages of the S. aureus life cycle. The bioluminescent MRSA strain, ALC6668, was generated from a clinical USA300 isolate (Stemper et al., 2006) in the same fashion as ALC2906.

Preparation of S. aureus for skin inoculation

S. aureus bioluminescent strains ALC2906 and ALC6668 were prepared as described (Cho et al., 2010). Briefly, mid logarithmic phase bacteria were obtained after a 2 hour subculture of a 1:50 dilution of the overnight culture. Bacterial cells were washed twice and resuspended in sterile pharmacy grade saline (0.9%) at the indicated concentrations. CFUs were verified after overnight culture of plates.

Mice

Male mice, 6–8 weeks old, on a C57BL/6 genetic background were used in all experiments. C57BL/6 wild type mice and IL 1R deficient mice (B6.129S7 Il1r1tm1Imx/J) were obtained from Jackson Laboratories, Bar Harbor, ME. In some experiments, LysEGFP mice, which is a mouse strain that possesses green fluorescent myeloid cells because of a knock in of EGFP into the lysozyme M gene, were used (Faust et al., 2000).
Mouse model of *S. aureus* skin wound infection

All procedures were approved by the University of California Los Angeles Chancellor’s animal research committee. The skin of mice on the posterior upper back and neck was shaved, and three parallel 8 mm in length full thickness scalp cuts (no. 11 blade) were made into the dermis. The wounds were inoculated with 10 µl of *S. aureus* strain ALC2906 (2 × 10⁵, 3, 2 × 10⁶, or 2 × 10⁷ CFUs per 10 µl) or ALC6665 (2 × 10⁶ CFUs per 10 µl) with a micropipettor. Control uninfected mice were given a sham inoculation with 10 µl of saline alone. Measurements of total lesion size (cm²) were made by analyzing digital photographs using the software program “Image J” (NIH Research Services Branch; http://rsbweb.nih.gov/ij/) and a millimeter ruler as a reference. In some experiments, a deeper *S. aureus* infection was generated by inoculating the backs of mice with an intradermal injection of *S. aureus* SH1000 strain (2 × 10⁶ CFUs per 100 µl) in sterile pharmacy grade saline (0.9%) using a 27 gauge insulin syringe (Cho et al., 2010).

Quantification of *in vivo* *S. aureus* (*in vivo* bioluminescence and CFUs)

Mice were anesthetized via inhalation of isoflurane (2%) and in *vivo* bioluminescence imaging was performed using the Xeno gen IVIS imaging system (Caliper Life Sciences) as previously described (Cho et al., 2010). Data are presented on color scale overlaid on a grayscale photograph of mice and quantified as total flux (photons per second) within a circular region of interest (1 × 10³ pixels) using Living Image software (Xenogen). In some experiments, to confirm that the *in vivo* bioluminescence signals accurately represented the bacterial burden in *vivo*, *S. aureus* CFUs were determined after overnight cultures of homogenized (Pro200 Series homogenizer (Pro Scientific, Oxford, CT)) 8 mm punch biopsy (Acuderm, Fort Lauderdale, FL) specimens of lesional skin taken at day 1 after inoculation.

Histological analysis

Mice were euthanized and lesional 8 mm punch biopsy (Acuderm) skin specimens were bisected and one half was fixed in formalin (10%) and embedded in paraffin and the other half was embedded in Tissue Tek O.C.T. (optimal cutting temperature) compound (Sakura Finetek, Torrance, CA) and frozen in liquid nitrogen. Paraffin sections (4 µm thick) were cut and stained with hematoxylin and eosin and Gram stain. Frozen sections (4 µm thickness) were cut and were then labeled with a biotinylated rat anti mouse Gr 1 mAb (1 µg/ml; clone RB6 8C5; IgG2b isotype; BD Pharmingen, San Diego, CA) or isotype control mAb using the immunoperoxidase method as previously described (Cho et al., 2010).

Quantification of neutrophil recruitment to the site of *S. aureus* skin wound infection (*in vivo* fluorescence imaging)

To obtain a measurement of neutrophil infiltration, LysEGFP mice were used. After *in vivo* bioluminescence imaging, *in vivo* fluorescence imaging was performed by using the Xenogen IVIS (Caliper Life Sciences). EGFP expressing cells were visualized using the GFP filter for excitation (445 490 nm) and emission (515 575 nm) at an exposure time of 0.5 seconds (Kim et al., 2008, 2009). Data are presented on color scale overlaid on a grayscale photograph of mice and quantified as total flux (photons per second) within a circular region of interest (1 × 10³ pixels) using Living Image software (Xenogen).

Administration of topical mupirocin and retapamulin ointment

The infected skin wounds were treated topically by applying 0.1 ml of mupirocin 2% ointment (Bactroban; GlaxoSmithKline, Research Triangle Park, NC), retapamulin 1% ointment (Altabax; Stiefel/ GlaxoSmithKline), or the corresponding vehicle ointment (polyethy lene glycol (mupirocin) and white petrolatum (retapamulin)) at 4 hours after *S. aureus* inoculation followed by twice daily (every 12 hours) application thereafter for a total of 7 days.

Statistical analysis

Data were compared using Student’s t test (two tailed). All data are expressed as mean ± SEM. Values of *P*<0.05 were considered statistically significant.

CONFLICT OF INTEREST

The authors state no conflict of interest.

ACKNOWLEDGMENTS

This work was supported in part by grants R01 AI078910 and R03 AR054534 (to LSM), R01 AI059091 (to JK), T32 AR058921 (to JSC), and the UCLA Small Animal Imaging Resource Program (SAIRP) R24 CA92863 from the National Institutes of Health and the Dermatologic Research Foundation of California (to JS).

REFERENCES

Cho JS, Pietras EM, Garcia NC et al. (2010) IL-17 is essential for host defense against cutaneous *Staphylococcus aureus* infection in mice. *J Clin Invest* 120:1762 73

Lee RT, Briggs WH, Cheng GC et al. (1997) Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. J Immunol 159:5084 8

Miller LS, O’Connell RM, Gutierrez MA et al. (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24:79 91

Stemper ME, Brady JM, Qutaishat SS et al. (2006) Shift in Staphylococcus aureus clone linked to an infected tattoo. Emerg Infect Dis 12:1444 6

www.jidonline.org